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Abstract

Reach into a box containing m balls and pull out a geometric (p) - sized sample.
Then put the balls back into the box and sample again. Let X be the number of samples
needed to see all m balls. We derive nonrecursive approximation formulas for the mean
and standard deviation of X.

1. Introduction
A box contains m identical white balls. Let K 1 , K 2 ,... be independent geometric (p)

random variables, so that P{Ki = k} = (1 -p)k-lp = qk-lp for k = 1, 2, .... We sample
repeatedly as follows. Sample K 1 A m balls from the box without replacement, paint them
red, and then return them to the box. Then sample K 2 A m balls from the box without
replacement, paint them red, and put them back into the box, etc. We wish to determine
the mean and variance of X, the number of samples needed to paint all the balls red.

As was pointed out to us by Larry Shepp, it is straightforward to derive exact recursive
formulas for the mean and variance of the remaining number of samples needed to paint
all the balls red when j of the m balls are still white.

The focus of this paper, however, will be to derive good nonrecursive approximations
for EX and the standard deviation ax. Our main results are given in Propositions 3.9 (for
EX) and 4.18 (for ax). In Section 5, exact values for EX and ax computed using Shepp's
recursions will be compared with our approximations for several values of m ranging from
10 to 300 forp= p .

2. The (Z, W) process
Our arguments will relate the original sampling-and-painting process described in

Section 1 to the following alternative process. Let Z1, Z2,... be independent random
variables uniformly distributed on {1, 2,... , m). Let W1 , W2 ,... be Bernoulli (p) random
variables, independent of each other and of the Z,'s. The iid sequence {(Zi, Wi)})90 will
be referred to as the (Z, W) process.

The sampling-and-painting process of Section 1 can be constructed from the (Z, W)
process. Suppose the m balls in the box are numbered 1, 2,..., m. The Zj's can be thought
of as the result of drawing bails from the box one at a time, with replacement. Suppose
also that after each ball draw we flip a coin which has probability p of coming up heads.
We may think of W. as being the indicator of the event that the ith coin toss was heads.

Sampling k balls without replacement can of course be done by drawing balls one at
a time, wita replacement, and ignoring draws of previously drawn balls until k distinct
balls have been obtained. Following this approach, define the first sample to be those balls
drawn before the first "counted" head, where ball draws and the associated coin flips are
"counted" only if the ball drawn does not repeat a previous draw (of the current sample.)
To get the second sample, we start anew according to the same rules after the first sample
has been completed. The process of generating the first sample usually ends with the first
counted head. However, if the coin flips following the first m counted draws are all tails
(corresponding to the event {KI > m)), then the process of generating the first sample
ends after the mth counted draw, (and the first sample contains all m balls.)
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3. The expectation of X
Let Di be the number of single-ball draws (counted and uncounted) needed to gen-

erate the it h sample. Note that the Di's are iid. Let Xi be the o-field generated by all
observations made while generating the first i samples. Note that X is an XFi stopping

X
time. The total number of draws needed to generate the first X samples is Y Di. Let

1

q =-p.
x

Lemma 3.1 E(- D) = (ED 1 )EX
1

Proof: Wald's identity. []

Lemma 3.2
rn--

EDi =

s=O Z

Proof
If K 1 A m > i, then the number of draws needed to obtain the (i + 1)"t distinct ball

after i distinct balls have already been obtained is a geometric ('-') random variable with
mean - Thus,

Mrn-

(3.3) E(DIIKI) = M m -- _I{K1 > i}.
j=0

Now take expectations in (3.3) El
Let r be the number of single-ball draws needed to obtain every ball at least once.

Lemma 3.4

r m M 1

i--O k=1

var(r)= " _M)2=MS :_-_-- -

i= -i k----1 V--k=1

This situation is sometimes calld the coupon collector problem. As in Lemma 3.2, r
is a sum of geometric (._i) random variables, here with i = 0,1,... ,m - 1. Adding the
expectations gives the formula for Er. These geometric random variables are independent,
so adding their variances gives the formula for var (7). []

x X
Now we need to relate E(F D,) to Er. The sum E Di and T" are of course equal

i 1
except for the "overshoot" given by the number of draws needed to complete the last
sample after the r'h draw. Let V be the size of the overshoot, so that

x
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From Lemmas 3.1, 3.2, and 3.4

X

EX = ED,

Er + EV
(3.5) ED,

m , .+EV
k=1
M--1

i=0

Let J be the number of distinct balls in the last sample after the rth draw. (The rth draw
is of course "counted" since the ball drawn was by definition never drawn before. The rtA
draw is the j tP counted draw in the Xth sample.) The expectation of V is easy to find in
terms of the distribution of J.
Lemma 3.6

m--1 m--1

EV= PJ=j}E M Lqi-j+.
j=1 r-

The argument is again like the coupon collector argument used for Lemmas 3.2 and
3.4. Given J = and Kx = k (with j _ k, necessarily), V is a sum of geometric (....)
random variables for j <i < k. Thus,

rn-1

(3.7) E(VIJ, Kx) = m iIfJ:5 i < Kx}.
i=1

But given J = j, Kx -J+1 is a geometric (p) random variable, by the. memoryless property
of geometric distributions. Thus, taking expectations with respec& to Kx in (3.7) yields

rn--i

E(VIJ) = M _iI{J < i}q-.J+l

=1-

Taking expectations on both sides yields Lemma 3.6. 0

Lemma 3.8

EV=p1 p E pljfj} + qPr- =ji Mp p P._ rn"- is -3z
P j=1 1
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Pr-f: Straightforward algebra. 0

Remark The number of additional "counted" draws needed to complete the last sample
after the rth draw is, except for truncation, a "number of failures" geometric random
variable with success probability p and therefore with mean .. This is where the first termp
in Lemma 3.8 comes from. The second term reflects the truncation due to the fact that
no sample can contain more than m balls. The last term in Lemma 3.8 is the expected
number of "uncounted" (i.e., repeat) draws obtained in the course of completing the X'h
sample after the rth draw.

When m is large, uncounted draws should be unusual. Assuming that J is seldom
very large, the last term in Lemma 3.7 looks like it should be of order m-1 for large m,
and the second term looks like it might be of order qm .

Proposition 3.9 As m -+ o0 with p fixed,

rn-I rn-I

EX = 8=20 M -q 1 = +0(M-2)•m--I

Proof
Let Nx be the number of "virgin" balls in the X t" sample which did not appear

in any previous sample. For laige m, Nx should equal 1 except on a set of probability
0(m-'). The formula in Proposition 3.9 is based on approximating the distribution of J
by the distribution of J conditioned on Nx = 1.

Lemma 3.10 For n = 1, 2,..., m, and n < j < m,

(j-1 qoj-l

P{J =jiNx = n} = (- n) '

n/-1'-'ni-I

s=n

Proof of Lemma 3.10
Suppose there are n "virgin" balls which have not been seen yet. As far as J is

concerned, conditioning on Nx = n here is the same as conditioning on the next sample
containing all of the remaining virgin balls.

One way to obtain the next sample is to draw all the balls from the box, one by one
and without replacement, while flipping a p-coin after each draw. The sample ends with
the first heads. The probability that the last virgin ball is drawn on the jo" draw here is
proportional to (j-1). The probability that the first j balls all get into the sample is j-o.
Lemma 3.10 follows. 0

Continuation of Proof of Proposition 3.9
For n = 1 in Lemma 3.10,

(3.11) P{J=jINx = 1} = pq j-- 1 -
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Substituting pqi/-1(l - qm ) for P{J = j} in Lemma 3.6 and then substituting the result
into (3.5) for EV produces the formula in Proposition 3.9. (after cancelation of m's in the
numerator and denominator.) To finish the proof, we need to show that the substitution
of P{J = jINx = 1} for P{J = j} in Lemma 3.6 (or, equivalently, in Lemma 3.8) causes
a change which is 0(m- 2 ). (Recall that D, Ž 1, so that the ED, in the denominator of
(3.5) is greater than 1.)

By using the moment generating function of -r and the Markov inequality, one can
show that

(3.12) P{T _> m 2 ) < 2mre-/2.

(See Lemma 3.23 of Sellke (1992).) Since X <Tr,

(3.13) P{X _ i 2} <2m /2,

and therefore

P{Kx > m/2} <P{max K, > m/2}

(3.14) <r 2 P{K, > m/2} + P{X > M2}

rn2 qm/ 2 - 1 + 2miem/2.

It follows from (3.14) and J < Kx that the second term in Lemma 3.8 is o(m- 2 ). It
is obvious from (3.11) that this second term is still o(m- 2 ) if P{J = j} is replaced by
P{J = jiNx = 1).

Now consider the situation when the second-to-last virgin ball has just been drawn.
What is the probability that the last virgin ball is drawn in the same sample as the second-
to-last? As long as the size of the current sample is _< m/2, the (conditional, given the
past) probability that the next counted draw will be the last virgin ball is < 2/m.

Each counted draw (including the one on which the second-to-last virgin ball was drawn)
of course has probability p of ending the current sample. It follows that

(3.15) P{N, > 1 and Kx :_ 2} 22 p+ L pm

Combining (3.14) and (3.15) yields

(3.16) P{Nx > 1} < PM + M 2q'-2 + 2mre-/2.pm

A similar argument shows

48 m2qnl2_1
(3.17) P{Nx > 3) <48 + 2m
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Now write the third term of Lemma 3.8 as

(3.18) E P(Nx = n} E P{J = jINx = n} EM " i--.

n=i j= 11

By (3.17), the contributions in (3.18) for n > 3 are collectively 0(m-2). By Lemma (3.10)
and (3.16) the contributions for n = 2 and n = 3 are also 0(m- 2 ). Finally, (3.11) and
(3.16) imply that replacing P{Nx = 11 by 1 in (3.18) changes the sum by 0(m- 2 ). Putting
all this together establishes Proposition 3.9. "

Remark Sellke (1992) uses a more complicated Markov-chain coupling argument to derive
the approximation j- 1

q i - - I m -- i J 1

P(J = ) :zz rn-1 j+ I

i=O

which approximates P{J = j} much better than does (3.10) above.

The resulting approximation

rn r-- I r

E X k = 1 t l j 1 l

M1 +-
- q, [- -, qi2

i---- i=0

is shown in Sellke (1992) to have an approximation error which converges to 0 exponentially
fast (in m).

4. The variance and standard deviation of X
As was the case with EX in Section 3, we will approximate var (X) by exploiting the

relationship with the (Z, W) process. The trick here will be to define a new and different
sampling scheme for which samples end either when a counted flip produces a heads or
when a "virgin" ball is drawn. (Again, a "virgin" ball is one which has never been drawn
before.) With this new sampling scheme, the number X of samples needed to see all the
balls is a sum of independent geometric random variables, so the variance of X is the sum
of the variances of the summand geometric random variables. It then remains to estimate
var(X)- var (X).

Let {(Z., W.)}', be exactly the same as the {(2,,W.)}__ process, except that
"W, is set equal to 1 each time the corresponding Zn is different from all previous Zi's,
i < n. (Otherwise, Wn = W..) In terms of ball draws and coin flips, the story is just as
before, except that we don't see the results of coin flips following draws of virgin balls. We
pretend that the unseen flips are all heads. Now define a "repeated sampling process" in
terms of the (Z, WV) process according to the same rules applied in Section 2 to the (Z, W)
process. Again draws and flips are "counted" only when the ball drawn does not repeat
a previous ball of the current sample, and W* = 1 for a "counted" flip signals the end of
the current sample. When there is danger of ambiquity, these samples will be referred as
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abbreviated samples, since they are abbreviated by the draws of virgin balls. Let X be the
number of abbreviated samples needed to see all the balls.

For k = 0, 1,... , m - 1, let irk be the probability that the next abbreviated sample
contains a virgin ball when exactly k balls have been seen already, (so that there are m - k
virgin balls left.)

Lemma 4.1 For k = 0,1,..., m - 1,

=k =E-

where Tk is a binomial (k, q) random variable. (As before, q = 1 - p.)

Proof

Think of the next abbreviated sample as being obtained as follows. For each of the
k nonvirgin balls, we flip the p-coin once, before drawing any more balls. Each nonvirgin
ball becomes a "heads" ball or a "tails" ball, depending on the result of the coin flip
corresponding to that ball. Let Tk be the number of tails among the k flips, so that T ,,-
binomial (k, q). Then we draw balls one at a time, without replacement, until we get either
a virgin ball or a nonvirgin "heads" ball, either of which ends the current sample. This
sampling protocol produces proper abbreviated samples, since it doesn't matter whether
the coin flipping is done while drawing the balls or before drawing the balls.

Since these are m - k virgin balls among the m - Tk balls which will terminate the
sample, the conditional probability, given Tk, that a virgin ball terminates the sample is
(m - k)/(m - T). Taking the expectation gives the unconditional probability that the
sample contains a virgin ball. C]

Lemma 4.2 For k = 0,1,...,m- 1 and any n = 2,3,...

r - k Tk - kq 2  + T - kq),
m-- k,{ m-kq m r - kq

+ E{(Tk - kq)n+l m - k
m-kq rm-Tk

Proof
Note that by algebra

m-k m-k 1

rn-Tk r-kg 1-Th-k.
m -kq

Applying
I1"+

-- + X+... +1"+lX l-z

to the last factor leads to

M - k r - k T -kq T, - kq

n--'Tk ---kq{1+m -nkq+'+ -kq))}

8



r--kq m-T"

Now take expectations, noting that E(Tk - kq) = 0.

Lemma 4.3 The relative error committed in approximating Wrk and also 1 - Wrk using

mrn- k kpq kpq(q - p) 3kIp2 q2 + kpq( 1 -'pq)
mr - kq (1 + (m - k,)2 +(m - kq)) +_ (m - kq)'

is O(m-3 ), uniformly in 0 < k < m and in p bounded away from 0.

Proof
Take n = 7 in Lemma 4.2, and use the formulas for central moments of binomials

given in Kendall and Stuart (1969), pages 121-3. 0
Recall that r is the number of single-ball draws (with replacement) needed to see all

the balls. Note that X - 1 is the number of "counted" heads flips (based on the (Z, W)
process) among the first r - 1 flips. Likewise, X-1 is the number of "counted" heads flips
(based on the (Z,W) process) among the first r - 1 flips. Let A, equal the number of
f4r is, n < -r, which equal 1 when W. is 0, so that

r-I

A, EZWn- W..
n=i1

Let 0 be the a- field generated by the entire (Z,Ir) process. Obviously, X is Q measur-
able, while the distribution of A1 , given 0, is binomial (m - 1,q). Thus, R and Al are
independent, and

vaf(X9 - A,) = var(A1 ) + var(XC)

(4.4) = (M - 1)p9 + E V2 .
k=O k1"

Now define
A 2 =: (" - A,) - X,

so that

(4.5) X = X - Al - A2 .

When the WK's are replaced by VV,'s, AI tails flips among the first r"-1 flips are replaced by
heads flips. Since the corresponding ball draws all produced virgin balls, these flips were
all "counted" flips in either scheme. All "counted" heads in the original scheme (using
the (Z, W) process) stay "counted" heads in the new scheme (with the (Z,WV) process.)
However, there may be a few (= A2) "uncounted" heads in the original (Z, W) scheme
among the first r- 1 flips which become "counted" heads in the new (Z,WV) scheme. (Recall
that a coin flip is "uncounted" when the corresponding ball drawn was drawn earlier in

9



the current sample.) When a "virgin tails" draw in the (Z, W) process becomes a "heads"
draw in the (Z,W) process, subsequent draws in the current, unabbreviated sample which
repeated earlier balls of that sample can become non-repeat (and therefore "counted")
draws in the (Z,W) process.

Now it remains to get a handle on the effect of A2 on the variance of X =X -Al - A2.
Heuristic reasoning suggests that the variance of A 2 should be bounded, uniformly

in m for p bounded away from 0. Indeed, the probability that a repeated draw occurs
in the course of generating a particular unabbreviated sample should be 0(m- 1 ), with
multiple repeats having probability 0(m- 2 ). Since there are m or fewer (unabbreviated)
samples which contain virgin balls, the total number of repeated (= uncounted) draws for
these samples should be Op(1). Note that A2 is <_ the number of repeated draws in the
samples containing virgin balls. Finally, it seems plausible that A 2 should be essentially
uncorrelated with X -A,. Thus, one would guess that

varX = var(( - A,) + var(A 2 ) + o(1)

(4.6) = (m - 1)pq + r 1 -Wk +var(A2 ) + 0(l),

so that
M--1

(4.7) (m - 1)pq + 72

should be an underestimate of var X with uniformly bounded error for all m and for p
bounded away from 0. We will show that var (A 2 ) is bounded. We will also give an
argument showing that the correlation between A2 and X -A 1 goes to 0 as m --+ co, but
the rate will not be enough to prove (4.6). However, it will be good enough to prove the
following result for the standard deviation ax of X.

Proposition 4.8 As m -- oo,

x = {(m- 1)pq + r 1 -
k=O 7

uniformly for p bounded away from 0.

Remark The error in this approximation for ax remains o(1) when the expression in Lemma
4.3 is used to approximate 7rk. A more explicit formula for ax resulting from application
of Lemma 4.3 is given in Proposition 4.18.

Lemma (4.9) For each e > 0, there exists a constant C, so that

var(A2 ) _ C,

for all m whenever p > c.

10



Let R be the number of repeat (uncounted) draws in all (unabbreviated) samples
containing virgin balls. Note again that A 2 _< R. For 1 < i < m, let R, be the number of
repeat draws in the it" sample containing a virgin ball, if there is an ith such sample. Set
Ri = 0 if there are no such sample. Thus, R R, +... + Rm. Let K(,) be the size of the
ith sample containing a virgin ball, with K(,) = 0 if there is no such sample.

Let 9i be th-' a-field generated by everything that happens up to and including the
completion of the sample containing the ith virgin ball. Then, given gi-1, K(i) is stochas-
tically less than or equal to K*, where

(1 -qm)-l kp2qk-I ifl_ <k_< -1

P{K* = k} = (1 - qm)-lmpqm-1 if k = m

0 else.

Indeed, the K* distribution is the exact distribution of K(,) (given Ci-i) when exactly one
virgin ball remains to be drawn. When more than one virgin ball is left, the distribution
of K(,) is easily shown to be stochastically smaller.

The conditional distribution of R(,), given gi- 1 and K(i) = k, is that of a sum of
independent geometric ('.) "number of failures" random variables with with 0 < t < k.
In symbols,

k-1

_(R(,)j,_,, K(,) = k) = ZGeomF(- ).
1=0 m

This is because the number of repeat draws made between the 0th and (t + 1)"t distinct
balls of the sample is GeoMF(M-1), independcnt of what came before. Thus,

m k--i

E(R(,) IC,-..) < (1 q,,q)i - qkq-1 E-
k=1 1=o

But there exist 4, q < 4 < 1, and B (depending on c > 0) so that k-qk'-l < Bq'k for all
k > 0 and all q • 1 - c. Thus, we easily get the bound (writing r = 1- q)

M k--I
1

E(R(,)IC,-.l) < B(1 - qm)-1 k = (m - )V

m

(4.10) _< Bf•-1 in qk2

where the second inequality follows from (m - 1)k > (m - k + 1)k > m/2 for 0 <_ <
k<m.

From
var{GeomF( -) -I

m (MIt)2'

11



we get
k-i em k-i f 2

E(RM)jS,,K(,) = k) E = 1 (m -e) 2 +

so

E(R•,)IQ(,)) < (1 - qm)-l • kqk-1k-eE(--2 kq k o (m- )2 + JE }q,)l =1It M _ =o •n--''- }
( 4 .1 1 ) < B /f- I E qk E M - J 3 + 1 1 2

k= 1 =o( -•=0 + m -_)k2

< BP-m( 4 + 4 2:5 (8B_ - 2 )mm m

Bounds (4.10) and (4.11) imply

E(R 2 ) = E{(R, +... + Rm) 2 }

M M--I M

= EE(R?)+2 E Z E{RjE(Rigi-:)}
i=1 i=1 j=i+1

<_ 8BP- 2 + 4B 2 P- 4 ,

which proves Lemma 4.9. 0

Lemma 4.12

covariance (X -- Al,A 2 ) = o(m), uniformly in p for p> cc > 0.

Proof of Lemma 4.12
First note from (4.4) and Lemma 4.3 (or see (4.18) below) that

" 1

(4.13) var(fC - ) -= m 2p 2 L -1 + O(mlogm)
j=1~

uniformly in p.
The idea here is that most of the variability in A 2 comes from what happens early in

the sampling process, while most of the variability in X - A, comes from what happens
later in the sampling process. For each m :> 3, let i* = i*(m) be the greatest integer less
than m{1 - (log m)- 1 }. Again let gi be the a-field generated by the (Z, W) process up
through the completion of the sample containing the ith distinct (=virgin) ball. Then it
is easy to show that

E{var(X -A,-)} -A.
var(X - A1 )

as m -+ oo. This in turn implies

(4.14) var{E(fC - A,1i9. ) = o{var(fC - A 1 )}

12



since
var(± - A1 )= var{E(± - A 1 j,.)} + E{var(. - A-1!i")}.

On the other hand,

(4.15) E{var(A 2 11•-) = o{var(A 2)},

since given ., there are only about m/log m remaining samples which will contain virgin
balls.

Now write

(4.16) (X-A 1)-E(X-A 1 )= {E(X-A,!Q,.)-E(X-Ai)}+{(X-A 1 )-E(X-AIg,.)}

and

(4.17) A 2 - E(A 2 ) - {E(A 2 Igi-)- E(A 2 )} + {A 2 - E(A 2 1 .i-)}.

By (4.13), (4.14), (4.15), Lemma 4.9, and the Cauchy-Schwarz inequality, the expectation
of the product of (4.16) and (4.17) is o(m), uniformly in p > E > 0, which proves the
lemma. [

Proof of Proposition 4.8
By Lemma 4.9 and Lemma 4.12,

varX = var(X - A1 - A 2)

= var(X - A) + o(m).

By (4.13),
0x = a_ + o(1),

which together with (4.4) proves Proposition 4.8. 0

Proposition 4.18

22M 1 M' 1

varX = {(m 2 p2 -2mpq) 4 F;+mp(q -p) Z } +o(1)

as m --o oo, uniformly for p > e > 0.

Replacing irk in (4.4) by

mr-k k__ _

Ik ;mt!q{7-
kI +(m -- kq)2}

and using Lemma 4.3 implies
"m1 m1

(4.19) var(X - AI) = (Mr 2 - 2mpq) • "+ mp(q - p) + O(log m)

13



after some calculation. The proposition now follows from Lemmas 4.9 and 4.12 as before
in Proposition 4.8. 0
Remark It seems likely that the covariance of X - A, and A2 is uniformly bounded or
perhaps even o(1) as m -- oo for p > c > 0. Thus, from (4.19) and Lemma 4.9 we
conjecture that

"i n 1 M 1
(4.20) var(X) = (m2p - 2mpq) E 2 + mp(q - p) Z + 0(log m)

7-1.

uniformly for p > e > 0.
5. Numerical results for p -

2
Here is how the exact values for EX (with p = compare with the approximation

in Proposition 3.9 for several values of m. (The exact values here and in the next table
were calculated from Larry Shepp's recursive formulas.)

Table 1

m E(X) E(X)-(3.9)
10 13.3812 0.05997
20 34.5149 0.00649
50 110.5647 0.000524
100 257.2316 0.000113
150 417.0115 0.000048
200 585.3392 0.000026
250 760.0133 0.000017
300 939.7404 0.000012

When p - j., the approximation for ax in Proposition 4.18 equals

to within 0(m- 1 ).

The following table shows how the exact values for ax (for p = compare with (5.1).

Tabble2

m ax ax-(5.1)
10 5.8086 0.2320
20 12.1008 0.1115
50 31.2789 0.0514
100 63.3212 0.0299
150 95.3768 0.0217
200 127.4361 0.0173
250 159.4970 0.0145
300 191.5588 0.0125
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